
Submitting Many Jobs at Once

Monday, Lecture 2
Lauren Michael

OSG Summer School 2018

Questions so far?

2

OSG Summer School 2018

Goals for this Session
• Logs, job states, and resource utilization
• Testing and troubleshooting as part of scaling

up.
• Best ways to submit multiple jobs (what we’re

here for, right?)

3

OSG Summer School 2018

Log File
000 (128.000.000) 05/09 11:09:08 Job submitted from host: <128.104.101.92&sock=6423_b881_3>
...
001 (128.000.000) 05/09 11:10:46 Job executing on host: <128.104.101.128:9618&sock=5053_3126_3>
...
006 (128.000.000) 05/09 11:10:54 Image size of job updated: 220

1 - MemoryUsage of job (MB)
220 - ResidentSetSize of job (KB)

...
005 (128.000.000) 05/09 11:12:48 Job terminated.

(1) Normal termination (return value 0)
Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage

0 - Run Bytes Sent By Job
33 - Run Bytes Received By Job
0 - Total Bytes Sent By Job
33 - Total Bytes Received By Job
Partitionable Resources : Usage Request Allocated

Cpus : 1 1
Disk (KB) : 14 20480 17203728
Memory (MB) : 1 20 20

4

OSG Summer School 2018

Job States

condor_submit Idle
(I)

Running
(R)

Completed
(C)

transfer
executable

and input to
execute

node

transfer
output

back to
submit node

in the queue leaving the queue

5

OSG Summer School 2018

Log File
000 (128.000.000) 05/09 11:09:08 Job submitted from host: <128.104.101.92&sock=6423_b881_3>
...
001 (128.000.000) 05/09 11:10:46 Job executing on host: <128.104.101.128:9618&sock=5053_3126_3>
...
006 (128.000.000) 05/09 11:10:54 Image size of job updated: 220

1 - MemoryUsage of job (MB)
220 - ResidentSetSize of job (KB)

...
005 (128.000.000) 05/09 11:12:48 Job terminated.

(1) Normal termination (return value 0)
Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage

0 - Run Bytes Sent By Job
33 - Run Bytes Received By Job
0 - Total Bytes Sent By Job
33 - Total Bytes Received By Job
Partitionable Resources : Usage Request Allocated

Cpus : 1 1
Disk (KB) : 14 20480 17203728
Memory (MB) : 1 20 20

6

OSG Summer School 2018

whole computer

your request

Resource Request
• Jobs are nearly always using a part of a machine

(a single slot), and not the whole thing
• Very important to request appropriate resources

(memory, cpus, disk)
- requesting too little: causes problems for your and

other jobs; jobs might by ‘held’ by HTCondor
- requesting too much: jobs will match to fewer “slots”

than they could, and you’ll block other jobs

7

OSG Summer School 2018

Log File
000 (128.000.000) 05/09 11:09:08 Job submitted from host: <128.104.101.92&sock=6423_b881_3>
...
001 (128.000.000) 05/09 11:10:46 Job executing on host: <128.104.101.128:9618&sock=5053_3126_3>
...
006 (128.000.000) 05/09 11:10:54 Image size of job updated: 220

1 - MemoryUsage of job (MB)
220 - ResidentSetSize of job (KB)

...
005 (128.000.000) 05/09 11:12:48 Job terminated.

(1) Normal termination (return value 0)
Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage

0 - Run Bytes Sent By Job
33 - Run Bytes Received By Job
0 - Total Bytes Sent By Job
33 - Total Bytes Received By Job
Partitionable Resources : Usage Request Allocated

Cpus : 1 1
Disk (KB) : 14 20480 17203728
Memory (MB) : 1 20 20

8

OSG Summer School 2018

TESTING AND
TROUBLESHOOTING

9

OSG Summer School 2018

What Can Go Wrong?
• Jobs can go wrong “internally”:

- the executable experiences an error
• Jobs can go wrong from HTCondor’s

perspective:
- a job can’t be matched
- a job is missing files
- uses too much memory
- has a badly formatted executable
- and more...

OSG Summer School 2018

Reviewing Failed Jobs
• A job’s log, output and error files can provide valuable

information for troubleshooting

Log Output Error

• When jobs were
submitted, started,
held, or stopped

• Resources used
• Exit status
• Where job ran
• Interruption

reasons

Any “print” or “display”
information from your
program (may contain
errors from the
executable).

Errors captured by the
operating system
while the executable
ran, or reported by the
executable, itself.

OSG Summer School 2018

Reviewing Jobs
• To review a large group of jobs at once, use
condor_history

As condor_q is to the present, condor_history is to the past

$ condor_history alice
ID OWNER SUBMITTED RUN_TIME ST COMPLETED CMD

189.1012 alice 5/11 09:52 0+00:07:37 C 5/11 16:00 /home/alice
189.1002 alice 5/11 09:52 0+00:08:03 C 5/11 16:00 /home/alice
189.1081 alice 5/11 09:52 0+00:03:16 C 5/11 16:00 /home/alice
189.944 alice 5/11 09:52 0+00:11:15 C 5/11 16:00 /home/alice
189.659 alice 5/11 09:52 0+00:26:56 C 5/11 16:00 /home/alice
189.653 alice 5/11 09:52 0+00:27:07 C 5/11 16:00 /home/alice
189.1040 alice 5/11 09:52 0+00:05:15 C 5/11 15:59 /home/alice
189.1003 alice 5/11 09:52 0+00:07:38 C 5/11 15:59 /home/alice
189.962 alice 5/11 09:52 0+00:09:36 C 5/11 15:59 /home/alice
189.961 alice 5/11 09:52 0+00:09:43 C 5/11 15:59 /home/alice
189.898 alice 5/11 09:52 0+00:13:47 C 5/11 15:59 /home/alice

HTCondor Manual: condor_history

OSG Summer School 2018

Held Jobs
• HTCondor will put your job on hold if there’s

something YOU need to fix.
- files not found for transfer, over memory, etc.

• A job that goes on hold is interrupted (all progress is
lost) and kept from running again, but remains in the
queue in the “H” state until removed,
or (fixed and) released.

OSG Summer School 2018

Diagnosing Holds
• If HTCondor puts a job on hold, it provides a hold reason, which can

be viewed in the log file, with condor_q –hold <Job.ID>, or with:
condor_q -hold -af HoldReason

$ condor_q -hold -af HoldReason
Error from slot1_1@wid-003.chtc.wisc.edu: Job has gone over
memory limit of 2048 megabytes.

Error from slot1_20@e098.chtc.wisc.edu: SHADOW at
128.104.101.92 failed to send file(s) to <128.104.101.98:35110>: error
reading from /home/alice/script.py: (errno 2) No such file or directory;
STARTER failed to receive file(s) from <128.104.101.92:9618>

Error from slot1_11@e138.chtc.wisc.edu: STARTER
at 128.104.101.138 failed to send file(s) to <128.104.101.92:9618>;

SHADOW at
128.104.101.92 failed to write to file /home/alice/Test_18925319_16.err:
(errno 122) Disk quota exceeded

OSG Summer School 2018

Common Hold Reasons
• Job has used more memory than requested.
• Incorrect path to files that need to be transferred
• Badly formatted executable scripts (have Windows

instead of Unix line endings)
• Submit directory is over quota.
• Job has run for too long. (72 hours allowed in

CHTC Pool)
• The admin has put your job on hold.

OSG Summer School 2018

Fixing Holds
• Job attributes can be edited while jobs are in the

queue using:
condor_qedit [U/C/J] Attribute Value

• If a job has been fixed and can run again,
release it with:

condor_release [U/C/J]

$ condor_qedit 128.0 RequestMemory 3072
Set attribute ”RequestMemory".

$ condor_release 128.0
Job 18933774.0 released

HTCondor Manual: condor_qedit
HTCondor Manual: condor_release

OSG Summer School 2018

Holding or Removing Jobs

• If you know your job has a problem and
it hasn’t yet completed, you can:
- Place it on hold yourself, with condor_hold [U/C/J]

- Remove it from the queue, using condor_rm [U/C/J]

$ condor_hold bob
All jobs of user ”bob" have been held

$ condor_hold 128.0
Job 128.0 held

$ condor_hold 128
All jobs in cluster 128 have been held

HTCondor Manual: condor_hold
HTCondor Manual: condor_rm

OSG Summer School 2018

SUBMITTING MULTIPLE JOBS

18

OSG Summer School 2018

Many Jobs, One Submit File

• HTCondor has built-in ways to submit
multiple independent jobs with one
submit file

OSG Summer School 2018

Advantages

• Run many independent jobs...
§ analyze multiple data files
§ test parameter or input combinations
§ scale up by breaking up!
§ we’re learning HTC, right?

• ...without having to:
- create separate submit files for each job
- submit and monitor each job, individually

OSG Summer School 2018

From one job …

• Goal: create 3 jobs that each analyze a
different input file.

executable = analyze.exe
arguments = file.in file.out
transfer_input_files = file.in

log = job.log
output = job.out
error = job.err

queue

job.submit

analyze.exe
file0.in
file1.in
file2.in

job.submit

(submit_dir)/

21

OSG Summer School 2018

Multiple numbered input files

• Generates 3 jobs, but doesn’t change inputs and will
overwrite the outputs

• So how can we specify different values to each job?

executable = analyze.exe
arguments = file.in file.out
transfer_input_files = file.in

log = job.log
output = job.out
error = job.err

queue 3

job.submit

analyze.exe
file0.in
file1.in
file2.in

job.submit

(submit_dir)/

22

OSG Summer School 2018

One submit file per job
(not recommended!)

23

executable = analyze.exe

arguments = file0.in file0.out
transfer_input_files = file0.in
output = job0.out
error = job0.err
queue 1

job0.submit

analyze.exe
file0.in
file1.in
file2.in
(etc.)

job0.submit
job1.submit
job2.submit
(etc.)

(submit_dir)/

executable = analyze.exe

arguments = file0.in file0.out
transfer_input_files = file0.in
output = job0.out
error = job0.err
queue 1

job1.submit

(etc…)

OSG Summer School 2018

Automatic Variables

Each job’s ClusterId and
ProcId numbers are
autogenerated and saved as
job attributes.

The user can reference
them inside the submit file
using:*

- $(Cluster)
- $(Process)

queue N

128

128

128

0

1

2

ClusterId ProcId

...
128 N-1

...

* $(ClusterId) and $(ProcId) are also okay 24

OSG Summer School 2018

Using $(Process) for Numbered Files

executable = analyze.exe
arguments = file$(Process).in file$(Process).out
transfer_input_files = file$(Process).in

log = job_$(Cluster).log
output = job_$(Process).out
error = job_$(Process).err

queue 3

job.submit

analyze.exe
file0.in
file1.in
file2.in

job.submit

(submit_dir)/

• $(Process) and $(Cluster) allow us to provide unique
values to each job and submission!

25

OSG Summer School 2018

Organizing Files in Sub-Directories

• Create sub-directories* and use paths in
the submit file to separate various input,
error, log, and output files.

log

* must be created before the job is submitted

OSG Summer School 2018

Shared Files
• HTCondor can transfer an entire

directory or all the contents of a directory
- transfer whole directory

- transfer contents only

• Useful for jobs with many shared files;
transfer a directory of files instead of
listing files individually

transfer_input_files = shared/

transfer_input_files = shared

job.submit
shared/

reference.db
parse.py
analyze.py
cleanup.py
links.config

(submit_dir)/

OSG Summer School 2018

Use Paths for File Type

executable = analyze.exe
arguments = file$(Process).in file$(Process).out
transfer_input_files = input/file$(Process).in

log = log/job$(Process).log
error = err/job$(Process).err

queue 3

job.submit
analyze.exe

input/
file0.in
file1.in
file2.in

log/
job0.log
job1.log
job2.log

err/
job0.err
job1.err
job2.err

file0.out
file1.out
file2.out

job.submit

(submit_dir)/

OSG Summer School 2018

Separating Files by Job with InitialDir
• Initialdir sets the initial location for each job’s

files, allowing each job to “live” in separate directories
on the submit server

• Allows same filenames for input/output files across jobs
• Also useful for jobs with lots of output files

job0 job1 job2 job3 job4

29

OSG Summer School 2018

Separating jobs with initialdir

executable = analyze.exe
initialdir = job$(Process)
arguments = file.in file.out
transfer_input_files = file.in

log = job.log
error = job.err

queue 3

job.submit
analyze.exe

job0/
file.in
job.log
job.err
file.out

job1/
file.in
job.log
job.err
file.out

job2/
file.in
job.log
job.err
file.out

job.submit

(submit_dir)/

executable must be relative
to the submission directory,

and *not* in the InitialDir.

30

OSG Summer School 2018

What about non-numbered jobs?

executable = compare_states
arguments = wi.dat us.dat wi.dat.out
…

executable = compare_states
arguments = mo.dat us.dat mo.dat.out
…

executable = compare_states
arguments = ca.dat us.dat ca.dat.out
…

executable = compare_states
arguments = md.dat us.dat md.dat.out
…

executable = compare_states
arguments = wv.dat us.dat wv.dat.out
…

executable = compare_states
arguments = fl.dat us.dat fl.dat.out
…

executable = compare_states
arguments = wa.dat us.dat wa.dat.out
…

executable = compare_states
arguments = mi.dat us.dat mi.dat.out
…

executable = compare_states
arguments = co.dat us.dat co.dat.out
…

executable = compare_states
arguments = nv.dat us.dat nv.dat.out
…

executable = compare_states
arguments = sd.dat us.dat sd.dat.out
…

executable = compare_states
arguments = mn.dat us.dat mn.dat.out
…

executable = compare_states
arguments = vt.dat us.dat vt.dat.out

executable = compare_states
arguments = tx.dat us.dat tx.dat.out

executable = compare_states
arguments = al.dat us.dat al.dat.out
…

executable = compare_states
arguments = ut.dat us.dat ut.dat.out
…

executable = compare_states
arguments = ak.dat us.dat ak.dat.out

executable = compare_states
arguments = tn.dat us.dat tn.dat.out
…

31

• Back to our compare_states example…
• What if we had data for each state? We could do 50

submit files (or 50 “queue 1” statements) ...

OSG Summer School 2018

What about non-numbered jobs?

32

• We could rename (map) our data to fit the $(Process)
or approach …

• Or we could use HTCondor’s powerful queue
language to submit jobs using our own variables!

OSG Summer School 2018

multiple
submit files

var matching
pattern
var in (i ii iii
…)
var1,var2
from csv_file

Submitting Multiple Jobs – Queue Statements

queue state matching *.dat

queue state in (wi.dat ca.dat co.dat)

queue state from state_list.txt wi.dat
ca.dat
mo.dat
...

state_list.txt:

33

Not Recommended

OSG Summer School 2018

Using Multiple Variables
• Both the “from” and “in” syntax

support multiple variables from a list.

executable = compare_states
arguments = -y $(year) -i $(infile)

transfer_input_files = $(infile)

queue infile,year from job_list.txt

wi.dat, 2010
wi.dat, 2015
ca.dat, 2010
ca.dat, 2015
mo.dat, 2010
mo.dat, 2015

job.submit job_list.txt

34

OSG Summer School 2018

Multiple Job Use Cases – Queue Statements

multiple
submit files

Not recommended. Though, can be useful for separating job
batches, conceptually, for yourself.

var matching
pattern

Natural nested looping, minimal programming, can use “files” or
“dirs” keywords to narrow possible matches.
Requires good naming conventions, less reproducible.

var in
(i,ii,iii,…)

All information contained in the submit file: reproducible.
Harder to automate submit file creation.

var1,var2
from csv_file

Supports multiple variables, highly modular (easy to use one
submit file for many job batches that have different var lists),
reproducible.
Additional file needed, but can be automated.

35

OSG Summer School 2018

Other Features
• Match only files or directories:

• Submit multiple jobs with same input data

- Use other automatic variables: $(Step)

• Combine with InitialDir:

queue input matching files *.dat

queue directory matching dirs job*

queue 10 input matching files *.dat

arguments = -i $(input) -rep $(Step)
queue 10 input matching files *.dat

InitialDir = $(directory)
queue directory matching dirs job*

OSG Summer School 2018

YOUR TURN!

37

OSG Summer School 2018

Exercises!
• Ask questions!
• Lots of instructors around

• Coming up:
- Now-12:15 Hands-on Exercises
- 12:15 – 1:15 Lunch
- 1:15 – 5:00 Afternoon sessions

38

