

# Workflows with HTCondor's DAGMan

Monday, Lecture 4

Lauren Michael



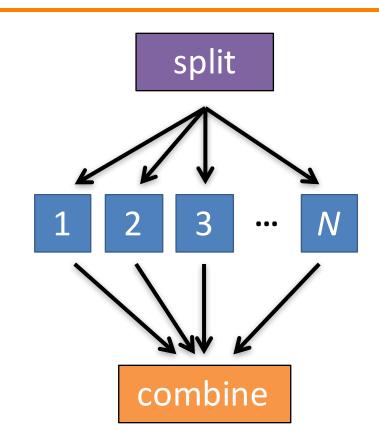
### **Questions so far?**



#### **Goals for this Session**

- Describing workflows as directed acyclic graphs (DAGs)
- Workflow execution via DAGMan (DAG Manager)
- Node-level options in a DAG
- Modular organization of DAG components
- Additional DAGMan Features

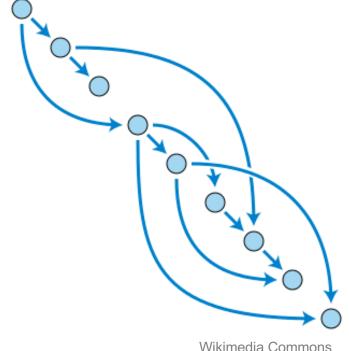



# WHY WORKFLOWS? WHY DAGS?



#### **Automation!**

 Objective: Submit jobs in a particular order, automatically.


 Especially if: Need to replicate the same workflow multiple times in the future.





### DAG = "directed acyclic graph"

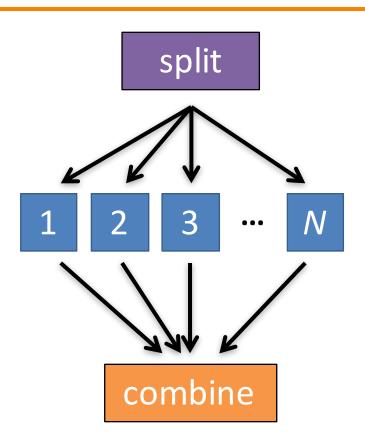
- topological ordering of vertices ("nodes") is established by directional connections ("edges")
- "acyclic" aspect requires a start and end, with no looped repetition
  - can contain cyclic subcomponents, covered in later slides for DAG workflows





# DESCRIBING WORKFLOWS WITH DAGMAN

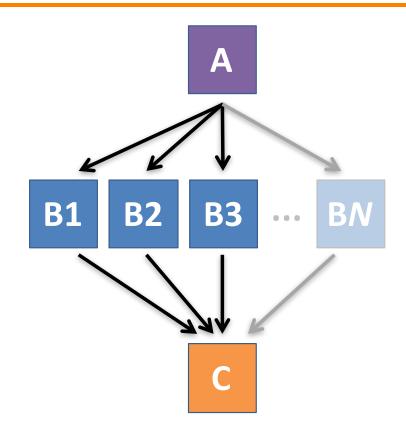



#### **DAGMan in the HTCondor Manual**





### **An Example HTC Workflow**

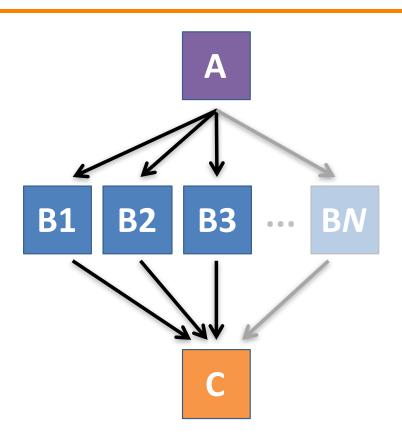

 User must communicate the "nodes" and directional "edges" of the DAG





### Simple Example for this Tutorial

The DAG input file
 will communicate the
 "nodes" and directional
 "edges" of the DAG






### Simple Example for this Tutorial

The DAG input file
will communicate the
"nodes" and directional
"edges" of the DAG







### Basic DAG input file: JOB nodes, PARENT-CHILD edges

#### my.dag

JOB A A.sub

JOB **B1** B1.sub

JOB **B2** B2.sub

JOB **B3** B3.sub

JOB C C.sub

PARENT A CHILD B1 B2 B3

PARENT B1 B2 B3 CHILD C

 Node names are used by various DAG features to modify their execution by DAG Manager.

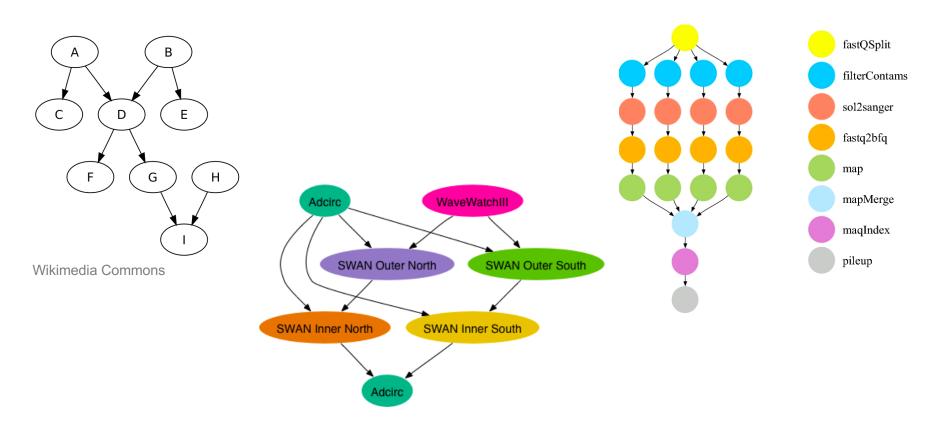




### Basic DAG input file: JOB nodes, PARENT-CHILD edges

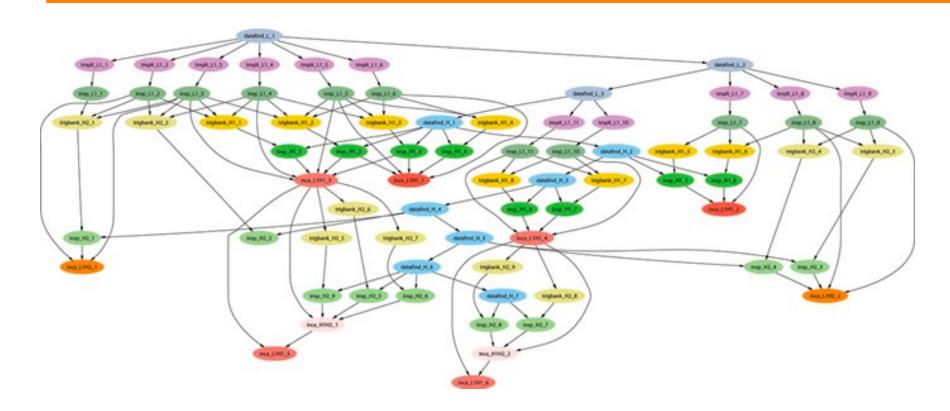
#### my.dag

```
JOB A A.sub
JOB B1 B1.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB C C.sub
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C
```


```
(dag_dir)/
```

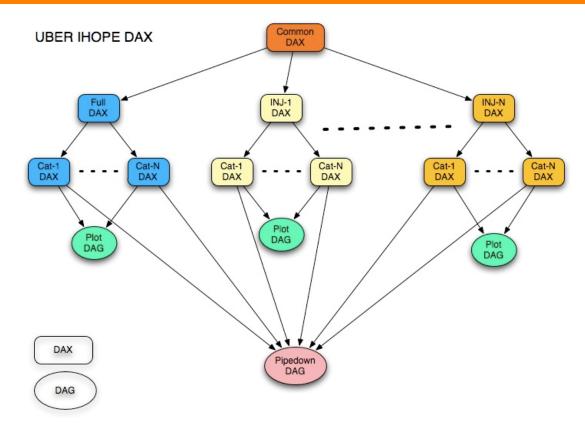
```
A.sub B1.sub
B2.sub B3.sub
C.sub my.dag
(other job files)
```

- Node names and filenames can be anything.
- Node name and submit filename do not have to match.




#### **Endless Workflow Possibilities**

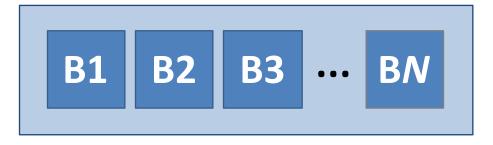




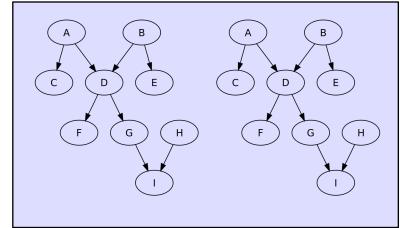

#### **Endless Workflow Possibilities**






### Repeating DAG Components!!






### DAGs are also useful for nonsequential work

'bag' of HTC jobs



#### disjointed workflows



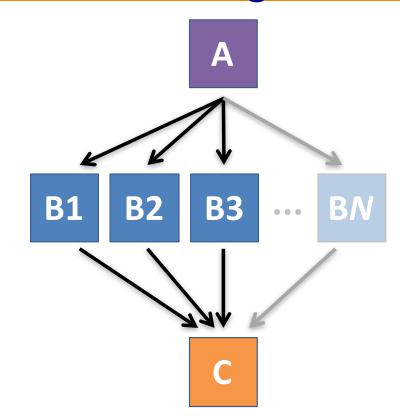


### Basic DAG input file: JOB nodes, PARENT-CHILD edges

#### my.dag

JOB A A.sub

JOB **B1** B1.sub


JOB **B2** B2.sub

JOB B3 B3.sub

JOB C C.sub

PARENT A CHILD B1 B2 B3

PARENT B1 B2 B3 CHILD C





# SUBMITTING AND MONITORING A DAGMAN WORKFLOW



### Submitting a DAG to the queue

Submission command:

condor\_submit\_dag dag\_file

```
$ condor_submit_dag my.dag

File for submitting this DAG to HTCondor : mydag.dag.condor.sub
Log of DAGMan debugging messages : mydag.dag.dagman.out
Log of HTCondor library output : mydag.dag.lib.out
Log of HTCondor library error messages : mydag.dag.lib.err
Log of the life of condor_dagman itself : mydag.dag.dagman.log

Submitting job(s).

1 job(s) submitted to cluster 87274940.
```



# A submitted DAG creates and DAGMan job in the queue

- DAGMan runs on the submit server, as a job in the queue
- At first:

```
$ condor q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
        BATCH NAME
OWNER
                      SUBMITTED DONE
                                        RUN
                                              IDLE
                                                   TOTAL
                                                          JOB IDS
alice my.dag+128  4/30 18:08
                                                          0.0
1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended
$ condor q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
       OWNER
                SUBMITTED
                             RUN TIME ST PRI SIZE CMD
 ID
128.0 alice 4/30 18:08 0+00:00:06 R 0
                                             0.3 condor dagman
1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended
```



# Jobs are automatically submitted by the DAGMan job

Seconds later, node A is submitted:

```
$ condor q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
       BATCH NAME SUBMITTED DONE RUN IDLE
OWNER
                                            TOTAL JOB IDS
alice
      my.dag+128 4/30 18:08
                                                5 129.0
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended
$ condor q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
       OWNER
               SUBMITTED
ID
                            RUN TIME ST PRI SIZE CMD
128.0 alice 4/30 18:08 0+00:00:36 R 0 0.3 condor dagman
129.0 alice 4/30 18:08 0+00:00:00 I 0 0.3 A split.sh
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended
```



## Jobs are automatically submitted by the DAGMan job

After A completes, B1-3 are submitted

```
$ condor q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
OWNER BATCH NAME SUBMITTED DONE RUN IDLE TOTAL JOB IDS
alice my.dag+128 4/30 8:08 1 3 5 129.0...132.0
4 jobs; 0 completed, 0 removed, 3 idle, 1 running, 0 held, 0 suspended
$ condor q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
ID
      OWNER SUBMITTED RUN TIME ST PRI SIZE CMD
128.0 alice 4/30 18:08 0+00:20:36 R 0 0.3 condor dagman
130.0 alice 4/30 18:18 0+00:00:00 I 0 0.3 B run.sh
131.0 alice 4/30 18:18 0+00:00:00 I 0 0.3 B run.sh
132.0 alice 4/30 18:18 0+00:00:00 I 0 0.3 B run.sh
4 jobs; 0 completed, 0 removed, 3 idle, 1 running, 0 held, 0 suspended
```



# Jobs are automatically submitted by the DAGMan job

After B1-3 complete, node C is submitted

```
$ condor q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
OWNER BATCH NAME SUBMITTED DONE RUN IDLE TOTAL JOB IDS
alice my.dag+128 4/30 8:08 4 1 5 129.0...133.0
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended
$ condor q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
ID
       OWNER SUBMITTED RUN TIME ST PRI SIZE CMD
128.0 alice 4/30 18:08 0+00:46:36 R 0 0.3 condor dagman
133.0 alice 4/30 18:54 0+00:00:00 I 0 0.3 C combine.sh
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended
```



### Status files are Created at the time of DAG submission

(dag\_dir)/

```
A.sub B1.sub B2.sub

B3.sub C.sub (other job files)

my.dag my.dag.condor.sub my.dag.dagman.log

my.dag.dagman.out my.dag.lib.err my.dag.lib.out

my.dag.nodes.log
```

- \*.condor.sub and \*.dagman.log describe the queued DAGMan job process, as for any other jobs
- \*.dagman.out has DAGMan-specific logging (look to first for errors)
- \*.lib.err/out contain std err/out for the DAGMan job process
- \*.nodes.log is a combined log of all jobs within the DAG



### Removing a DAG from the queue

 Remove the DAGMan job in order to stop and remove the entire DAG:

```
condor_rm dagman_jobID
```

 Creates a rescue file so that only incomplete or unsuccessful NODES are repeated upon resubmission

```
$ condor_q
-- Schedd: submit-3.chtc.wisc.edu: <128.104.100.44:9618?...

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice my.dag+128 4/30 8:08 4 _ 1 6 129.0...133.0
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended
$ condor_rm 128
All jobs in cluster 128 have been marked for removal
```



### Removal of a DAG results in a rescue file

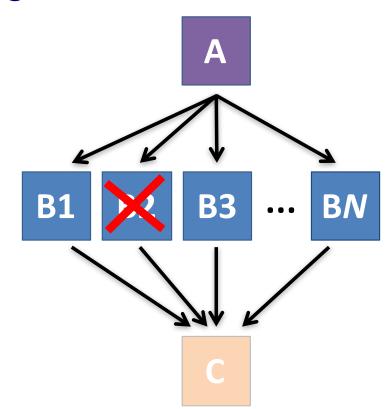
(dag\_dir)/

```
A.sub B1.sub B2.sub B3.sub C.sub (other job files)
my.dag my.dag.condor.sub my.dag.dagman.log
my.dag.dagman.out my.dag.lib.err my.dag.lib.out
my.dag.metrics my.dag.nodes.log my.dag.rescue001
```

- Named dag\_file.rescue001
  - increments if more rescue DAG files are created
- Records which NODES have completed successfully
  - does not contain the actual DAG structure



### Rescue Files For Resuming a Failed DAG


- A rescue file is created when:
  - a node fails, and after DAGMan advances through any other possible nodes
  - the DAG is removed from the queue (or aborted; covered later)
  - the DAG is halted and not unhalted (covered later)
- Resubmission uses the rescue file (if it exists) when the original DAG file is resubmitted
  - OVerride: condor\_submit\_dag dag\_file -f



### Node Failures Result in DAG

#### **Failure**

- If a node JOB fails (nonzero exit code)
  - DAGMan continues to run other JOB nodes until it can no longer make progress
- Example at right:
  - B2 fails
  - Other B\* jobs continue
  - DAG fails and exits after B\* and before node C





### Resolving held node jobs

```
$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 4/30 18:08 0+00:20:36 R 0 0.3 condor_dagman

130.0 alice 4/30 18:18 0+00:00:00 H 0 0.3 B_run.sh

131.0 alice 4/30 18:18 0+00:00:00 H 0 0.3 B_run.sh

132.0 alice 4/30 18:18 0+00:00:00 H 0 0.3 B_run.sh

4 jobs; 0 completed, 0 removed, 0 idle, 1 running, 3 held, 0 suspended
```

- Look at the hold reason (in the job log, or with 'condor\_q -hold')
- Fix the issue and release the jobs (condor\_release)
   -OR- remove the entire DAG, resolve, then resubmit the DAG (remember the automatic rescue DAG file!)



### **DAG Completion**

```
(dag_dir)/
```

```
A.sub B1.sub B2.sub

B3.sub (other job files)

my.dag my.dag.condor.sub my.dag.dagman.log

my.dag.dagman.out my.dag.lib.err my.dag.lib.out

my.dag.nodes.log my.dag.dagman.metrics
```

- \*.dagman.metrics is a summary of events and outcomes
- \*.dagman.log will note the completion of the DAGMan job
- \*.dagman.out has detailed logging (look to first for errors)



# BEYOND THE BASIC DAG: NODE-LEVEL MODIFIERS



### **Default File Organization**

#### my.dag

```
JOB A A.sub
JOB B1 B1.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB C C.sub
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C
```

```
A.sub B1.sub
B2.sub B3.sub
C.sub my.dag
(other job files)
```

 What if you want to organize files into other directories?



### Node-specific File Organization with *DIR*

DIR sets the submission directory of the node

#### my.dag

```
JOB A A.sub DIR A

JOB B1 B1.sub DIR B

JOB B2 B2.sub DIR B

JOB B3 B3.sub DIR B

JOB C C.sub DIR C

PARENT A CHILD B1 B2 B3

PARENT B1 B2 B3 CHILD C
```

(dag\_dir)/

```
my.dag
A/ A.sub (A job files)
B/ B1.sub B2.sub
B3.sub (B job files)
C/ C.sub (C job files)
```



### PRE and POST scripts run on the submit server, as part of the node

#### my.dag

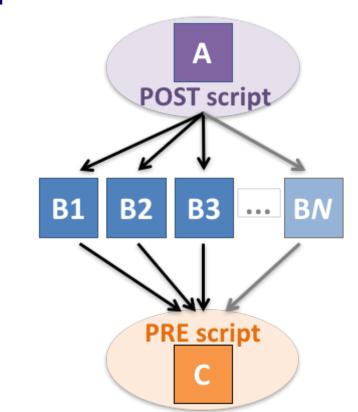
JOB A A.sub

SCRIPT POST A sort.sh

JOB B1 B1.sub

JOB B2 B2.sub

JOB B3 B3.sub


JOB C C.sub

SCRIPT PRE C tar\_it.sh

PARENT A CHILD B1 B2 B3

PARENT B1 B2 B3 CHILD C

 Use sparingly for lightweight work; otherwise include work in node jobs





### SCRIPT Arguments and Argument Variables

JOB A A.sub SCRIPT POST A checkA.sh my.out \$RETURN RETRY A 5

**\$JOB**: node name

**\$JOBID**: cluster.proc

**\$RETURN**: exit code of the node

**\$PRE\_SCRIPT\_RETURN:** exit code of PRE script

**\$RETRY**: current retry count

(more variables described in the manual)

<u>DAGMan Applications > DAG Input File > SCRIPT</u> DAGMan Applications > Advanced Features > Retrying



# RETRY failed nodes to overcome transient errors

Retry a node up to N times if the exit code is non-zero:

RETRY node\_name N

Example: JOB A A.sub

RETRY A 5

JOB B B.sub

PARENT A CHILD B

- Note: Unnecessary for nodes (jobs) that can use max\_retries in the submit file
- See also: retry except for a particular exit code (UNLESS-EXIT), or retry scripts (DEFER)

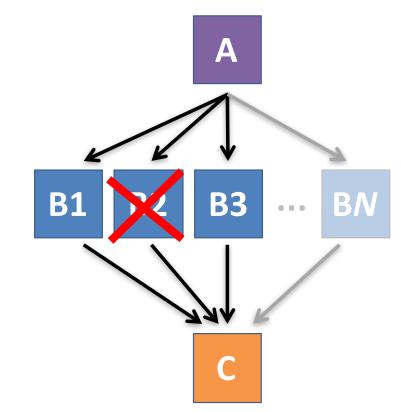
DAGMan Applications > Advanced Features > Retrying
DAGMan Applications > DAG Input File > SCRIPT



# RETRY applies to whole node, including PRE/POST scripts

- PRE and POST scripts are included in retries
- RETRY of a node with a POST script uses the exit code from the POST script (not from the job)
  - POST script can do more to determine node success, perhaps by examining JOB output

#### Example:


```
SCRIPT PRE A download.sh
JOB A A.sub
SCRIPT POST A checkA.sh
RETRY A 5
```

<u>DAGMan Applications > Advanced Features > Retrying</u> DAGMan Applications > DAG Input File > SCRIPT



## Best Control Achieved with One Process per JOB Node

- While submit files can 'queue' many processes, a single process per submit file is best for DAG JOBs
  - Failure of any process in a
     JOB node results in failure of
     the entire node and
     immediate removal of other
     processes in the node.
  - RETRY of a JOB node retries the entire submit file.





### Submit File Templates via VARS

 VARS line defines node-specific values that are passed into submit file variables

```
VARS node_name var1="value" [var2="value"]
```

 Allows a single submit file shared by all B jobs, rather than one submit file for each JOB.

#### my.dag

```
JOB B1 B.sub

VARS B1 data="B1" opt="10"

JOB B2 B.sub

VARS B2 data="B2" opt="12"

JOB B3 B.sub

VARS B3 data="B3" opt="14"
```

#### B.sub

```
...
InitialDir = $(data)
arguments = $(data).csv $(opt)
...
queue
```



# MODULAR ORGANIZATION OF DAG COMPONENTS

OSG Summer School 2018 41

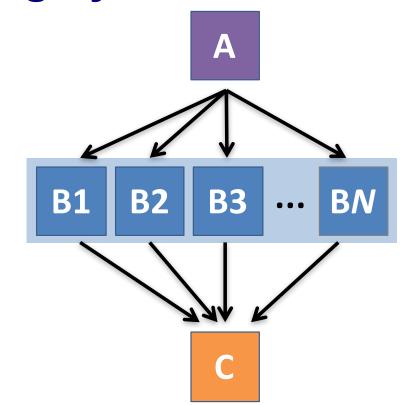


# SPLICE groups of nodes to simplify lengthy DAG files

#### my.dag

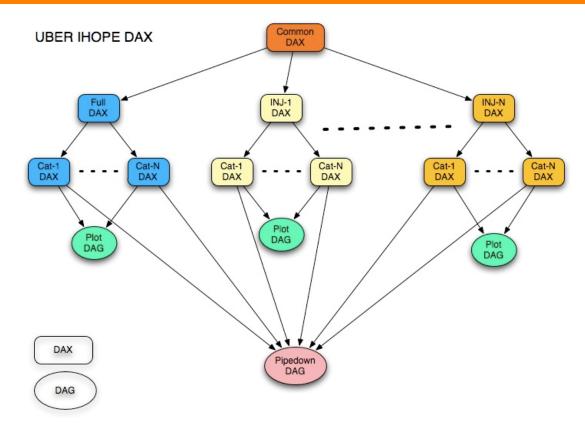
```
JOB A A.sub

SPLICE B B.spl


JOB C C.sub

PARENT A CHILD B

PARENT B CHILD C
```


#### B.spl

```
JOB B1 B1.sub
JOB B2 B2.sub
...
JOB BN BN.sub
```





### Repeating DAG Components!!





# Use nested SPLICEs with DIR for repeating workflow components

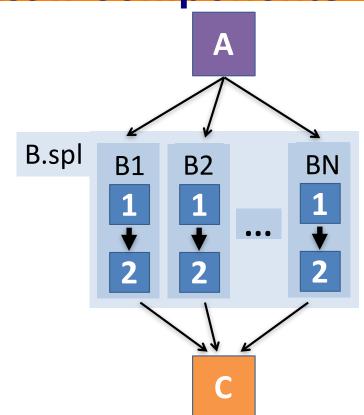
```
my.dag

JOB A A.sub DIR A

SPLICE B B.spl DIR B

JOB C C.sub DIR C

PARENT A CHILD B
```


#### B.spl

PARENT B CHILD C

```
SPLICE B1 ../inner.spl DIR B1
SPLICE B2 ../inner.spl DIR B2
...
SPLICE BN ../inner.spl DIR BN
```

#### inner.spl

```
JOB 1 ../1.sub
JOB 2 ../2.sub
PARENT 1 CHILD 2
```





# Use nested SPLICEs with DIR for repeating workflow components

# my.dag JOB A A.sub DIR A SPLICE B B.spl DIR B JOB C C.sub DIR C PARENT A CHILD B PARENT B CHILD C

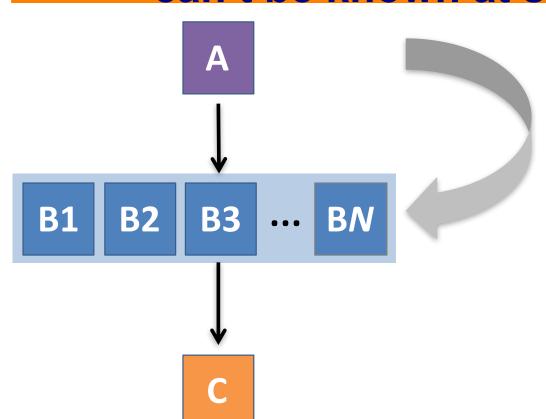
#### B.spl

```
SPLICE B1 ../inner.spl DIR B1
SPLICE B2 ../inner.spl DIR B2
...
SPLICE BN ../inner.spl DIR BN
```

#### inner.spl

```
JOB 1 ../1.sub

JOB 2 ../2.sub


PARENT 1 CHILD 2
```

### (dag\_dir)/

```
my.dag
A/
     A.sub (A job files)
B/
     B.spl inner.spl
      1.sub 2.sub
     B1/ (1-2 job files)
     B2/ (1-2 job files)
     BN/ (1-2 \text{ job files})
     C.sub (C job files)
```



# What if some DAG components can't be known at submit time?



If *N* can only be determined as part of the work of **A** ...

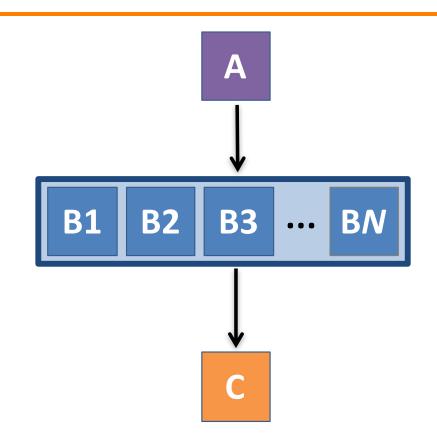


### A SUBDAG within a DAG

### my.dag

```
JOB A A.sub

SUBDAG EXTERNAL B B.dag


JOB C C.sub

PARENT A CHILD B

PARENT B CHILD C
```

### **B.dag** (written by **A**)

```
JOB B1 B1.sub
JOB B2 B2.sub
...
JOB BN BN.sub
```





# Much More at the end of the presentation and in the HTCondor Manual!!!

https://research.cs.wisc.edu/htcondor/manual/current/2\_Users\_Manual.html



## **YOUR TURN!**

OSG Summer School 2018 49



### **DAGMan Exercises!**

- Ask questions!
- Lots of instructors around

- Coming up:
  - now–5:00pm Hands-On Exercises
  - 5:00pm on On Your Own

OSG Summer School 2018 50



### More on SPLICE Behavior

- Upon submission of the outer DAG, nodes in the SPLICE(s) are added by DAGMan into the overall DAG structure.
  - A single DAGMan job is queued with single set of status files.
- Great for gradually testing and building up a large DAG (since a SPLICE file can be submitted by itself, as a complete DAG).
- SPLICE lines are not treated like nodes.
  - no PRE/POST scripts or RETRIES (though this may change)



### More on SUBDAG Behavior

- WARNING: SUBDAGs should only be used (over SPLICES) when absolutely necessary!
  - Each SUBDAG EXTERNAL has it's own DAGMan job running in the queue, on the submit server.
- SUBDAGs are nodes in the outer DAG (can have PRE/POST scripts, retries, etc.)
- A SUBDAG is not submitted until prior nodes in the outer DAG have completed.



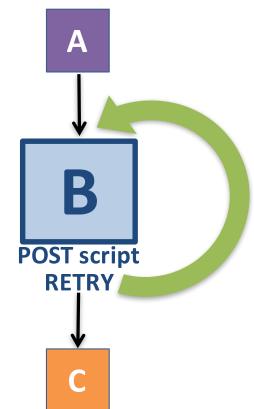
# Use a SUBDAG to achieve a Cyclic Component within a DAG

- POST script determines whether another iteration is necessary; if so, exits non-zero
- RETRY applies to entire SUBDAG, which may include multiple, sequential nodes

#### my.dag

```
JOB A A.sub

SUBDAG EXTERNAL B B.dag


SCRIPT POST B iterateB.sh

RETRY B 1000

JOB C C.sub

PARENT A CHILD B

PARENT B CHILD C
```





### **Other DAGMan Features**



# Other DAGMan Features: Node-Level Controls

Set the **PRIORITY** of JOB nodes with:

PRIORITY node\_name priority\_value

 Use a PRE\_SKIP to skip a node and mark it as successful, if the PRE script exits with a specific exit code:

PRE\_SKIP node\_name exit\_code



# Other DAGMan Features: Modular Control

- Append NOOP to a JOB definition so that its JOB process isn't run by DAGMan
  - Test DAG structure without running jobs (node-level)
  - Simplify combinatorial PARENT-CHILD statements (modular)
- Communicate DAG features separately with INCLUDE
  - e.g. separate file for JOB nodes and for VARS definitions, as part of the same DAG
- Define a CATEGORY to throttle only a specific subset of jobs

<u>DAGMan Applications > The DAG Input File > JOB</u>
<u>DAGMan Applications > Advanced Features > INCLUDE</u>

DAGMan Applications > Advanced > Throttling by Category



# Other DAGMan Features: DAG-Level Controls

- Replace the node\_name with ALL\_NODES to apply a DAG feature to all nodes of the DAG
- Abort the entire DAG if a specific node exits with a specific exit code:

```
ABORT-DAG-ON node name exit code
```

 Define a FINAL node that will always run, even in the event of DAG failure (to clean up, perhaps).

```
FINAL node_name submit_file
```

<u>DAGMan Applications > Advanced > ALL\_NODES</u>

<u>DAGMan Applications > Advanced > Stopping the Entire DAG</u>

<u>DAGMan Applications > Advanced > FINAL Node</u>