
The Principles of HTC

Miron Livny

Wisconsin Institutes for Discovery

University of Wisconsin-Madison

Focus on the needs
and expectations of

researchers

HTCondor at

Collin Mehring

Using HTCondor Since 2011

How do we have HTCondor configured?

● All DAG jobs

○ Many steps involved in rendering a frame

● GroupId.NodeId.JobId instead of ClusterId

○ Easier communication between departments

● No preemption (yet)

○ Deadlines are important - No lost work

○ Checkpointing coming soon in new renderer

● Heavy use of group accounting

○ Render Units (RU), the scaled core-hour

○ Productions pay for their share of the farm

● Execution host configuration profiles

○ e.g. Desktops only run jobs at night

○ Easy deployment and profile switching

● Load data from JobLog/Spool files into

Postgres, Influx, and analytics databases

Quick Facts

● Central Manager and backup (HA)

○ On separate physical servers

● One Schedd per show, scaling up to ten

○ Split across two physical servers

● About 1400 execution hosts

○ ~45k server cores, ~15k desktop cores

○ Almost all partitionable slots

● Complete an average of 160k jobs daily

● An average frame takes 1200 core hours

over its lifecycle

● Trolls took ~60 million core-hours

The words of Koheleth son of David, king in

Jerusalem ~ 200 A.D.

Only that shall happen

Which has happened,

Only that occur

Which has occurred;

There is nothing new

Beneath the sun!

Ecclesiastes Chapter 1 verse 9

Ecclesiastes, (, קֹהֶלֶת Kohelet, "son

of David, and king in Jerusalem"

alias Solomon, Wood engraving

Gustave Doré (1832–1883)

We are driven by Principals (⌐ Hype)

Perspectives on Grid Computing
(2010)

Uwe Schwiegelshohn Rosa M. Badia Marian Bubak Marco Danelutto Schahram
Dustdar Fabrizio Gagliardi Alfred Geiger Ladislav Hluchy Dieter Kranzlmüller

Erwin Laure Thierry Priol Alexander Reinefeld Michael Resch Andreas Reuter Otto
Rienhoff Thomas Rüter Peter Sloot Domenico Talia Klaus Ullmann Ramin

Yahyapour Gabriele von Voigt

We should not waste our time in redefining
terms or key technologies: clusters, Grids,
Clouds... What is in a name? Ian Foster recently
quoted Miron Livny saying: "I was doing Cloud
computing way before people called it Grid
computing", referring to the ground breaking
Condor technology.

The paradigm shift of
70’s – computing

hardware packaged and
sold in small units

The paradigm shift of
00’s – computing

capacity leased by the
minute when needed

– High Availability and Reliability

– High System Performance

– Ease of Modular and Incremental Growth

– Automatic Load and Resource Sharing

– Good Response to Temporary Overloads

– Easy Expansion in Capacity and/or Function

Claims for “benefits” provided by Distributed
Processing Systems

P.H. Enslow, “What is a Distributed Data Processing
System?” Computer, January 1978

Definitional Criteria for a Distributed
Processing System

– Multiplicity of resources

– Component interconnection

– Unity of control

– System transparency

– Component autonomy

P.H. Enslow and T. G. Saponas “”Distributed and
Decentralized Control in Fully Distributed Processing
Systems” Technical Report, 1981

Unity of Control

All the component of the system
should be unified in their desire to
achieve a common goal. This goal
will determine the rules according to
which each of these elements will be
controlled.

Component autonomy

The components of the system, both the
logical and physical, should be autonomous
and are thus afforded the ability to refuse a
request of service made by another element.
However, in order to achieve the system’s
goals they have to interact in a cooperative
manner and thus adhere to a common set of
policies. These policies should be carried out
by the control schemes of each element.

It is always a
tradeoff

In 1983 I wrote
a Ph.D. thesis –

“Study of Load Balancing
Algorithms for Decentralized

Distributed Processing Systems”

http://www.cs.wisc.edu/condor/doc/livny-dissertation.pdf

Minimize wait
(job/task queued)

while Idle (a
resource that is
capable and willing to
serve the job/task is
running a lower
priority job/task)

When each resource has a
it’s own queue, when

should I stay at the
current queue and wait

and when should I move
to another queue?

“ … Since the early days of mankind the primary
motivation for the establishment of communities
has been the idea that by being part of an
organized group the capabilities of an individual
are improved. The great progress in the area of
inter-computer communication led to the
development of means by which stand-alone
processing sub-systems can be integrated into
multi-computer ‘communities’. … “

Miron Livny, “ Study of Load Balancing Algorithms for Decentralized Distributed

Processing Systems.”,

Ph.D thesis, July 1983.

In 1985 we extended the
scope of the distributed load
balancing problem to include

“ownership” of resources

Should I share my
resource and if I do

with whom and
when?

Now you have a community
of customers who are

motivated to share and act
as consumers, providers or

both

In 1996 I introduced the distinction between

High Performance Computing (HPC) and High

Throughput Computing (HTC) in a seminar at
the NASA Goddard Flight Center in and a month
later at the European Laboratory for Particle
Physics (CERN). In June of 1997 HPCWire
published an interview on High Throughput
Computing.

“… many fields today rely on high-
throughput computing for discovery.”

“Many fields increasingly rely on
high-throughput computing”

High Throughput Computing
requires automation as it
is a 24-7-365 activity that

involves large numbers of jobs

FLOPY  (60*60*24*7*52)*FLOPS

100K Hours*1 Job ≠ 1 H*100K J

High Throughput Computing
30

Obstacles to HTC

Ownership Distribution

Size and Uncertainties

Technology Evolution

Physical Distribution

(Sociology)

(Robustness)

(Portability)

(Technology)

The Open Science Grid
(OSG) national fabric of
distribute HTC services

“The members of OSG are united by a
commitment to promote the adoption
and to advance the state of the art
of distributed high throughput
computing (DHTC) – shared
utilization of autonomous resources
where all the elements are optimized
for maximizing computational
throughput.”

1.60B core hours in
12 months!

Almost all jobs executed by

the OSG leverage (HT)Condor

technologies:
– Condor-G

– HTCondor-CE

– Basco

– Condor Collectors

– HTCondor overlays

– HTCondor pools

Total Wall Hours

Total Jobs

Submit locally (queue and

manage your jobs/tasks locally;

leverage your local resources) and
run globally (acquire any

resource that is capable and willing to
run your job/task)

• Job owner identity is local
• Owner identity should never “travel” with the

job to execution site

• Owner attributes are local

• Name spaces are local
• File names are locally defined

• Resource acquisition is local
• Submission site (local) is responsible for the

acquisition of all resources

• “external” forces moved us away from this
“pure” local centric view of the distributed
computing environment.

• With the help of capabilities (short lived
tokens) and reassignment of
responsibilities we are committed to
regain full local control.

• Handing users with money (real or funny)
to acquire commuting resources helps us
move (push) in this positive direction.

Using Directed Acyclic
Graphs (DAGs) to

support declarative
automation of

interdependent tasks

2017 Nobel Prize in Physics

39

• “When a workflow might consist of 600,000
jobs, we don’t want to rerun them if we make
a mistake. So we use DAGMan (Directed
Acyclic Graph Manager, a meta-scheduler for
HTCondor) and Pegasus workflow manager to
optimize changes,” added Couvares. “The
combination of Pegasus, Condor, and OSG
work great together.” Keeping track of what
has run and how the workflow progresses,
Pegasus translates the abstract layer of what
needs to be done into actual jobs for Condor,
which then puts them out on OSG.

http://research.cs.wisc.edu/htcondor/dagman/dagman.html
http://research.cs.wisc.edu/htcondor/

Example of a LIGO Inspiral DAG
(Workflow)

HTC is about sharing across
many jobs, many users,

many servers, many sites
and (potentially) long

running workflows

A job submitted to a batch service
consists of an Acquisition Request
(AquR) and a Job Description (JobD).

The Provision Manager (Pman) of the
service provisions the resources and
then runs the job on theses resources
via the Job Launcher (JaL)

Most batch services
manage a static

collection of resources

HTCondor uses a matchmaking process to

dynamically acquire resources.

HTCondor uses a matchmaking process to

provision them to queued jobs.

HTCondor launches jobs via a task

delegation protocol.

Submit Locally Run Globally

A
c
c
e
s
s
 P

o
in

t

Local Cluster

National Supercomputer

Collaborator’s Cluster

OSG Deployed

HTCondor

Nationally Shared Clusters

Commercial Cloud
s
h
a

ri
n
g

OSG integrates computing across different

resource types and business models.

Traditional (low
frequency) Capacity

Planning

Turning $s into computing power

• Collect workload characteristics and customer
(performance) metrics

• Understand the cost-performance profile of
the hardware and software options

• Acquire (select, purchase, install) the
resources and place them under the control of
a batch service

• Live with your decision for (5-8) years

Next generation (High
frequency) Capacity

Planning when resources
can be rented by the

minute or by the hour

Researcher or VOs may have …

• Resources they own and therefore fully control

• An allocation of resources on shared
campus/national computing facility

• “Fair Share” privileges on shared
campus/national computing facilities

• Opportunistic Resources provided by
collaborators

• Funding to purchase resources from a
commercial cloud provider

Commercial clouds offer to
individuals with money …

• Unbounded on demand capacity for (almost)
as long as needed

• A variety of cost/performance option for
processing and storage resources

• Dynamic cost structures that track demand
and supply

• Diverse (and competing) suppliers of
computing resources and associated services

Joint project

HEPCloud (Fermilab), HTCondor (UW-Madison), Google Cloud

SC16 Demo: On Demand Doubling of CMS Computing Capacity

7/20/2018 Burt Holzman | Fermilab HEPCloud and HTCondor

Google Cloud Cores• HEPCloud provisions Google

Cloud with HTCondor in two

ways

– HTCondor talks to Google API

– Resources are joined into HEP

HTCondor pool

• Demonstrated sustained large

scale elasticity (>150K cores) in

response to demand and

external constraints

– Ramp-up/down with opening/closing

of exhibition floor

– Tear-down when no jobs are waiting

730,172 jobs consumed 6.35M core hours to

produce 205M simulated events (81.8 TB)

Total cost ~$100K

300K

350K

250K

200K

150K

100K

50K

Global CMS Running Jobs 11/14-19

500 TB were placed
in Google Cloud in

advance. 80TB where
moved back to Fermi.

7/20/2018
Presenter | Presentation Title or Meeting Title 54

HEPCloud is an R&D
project led by the
Fermi computing

division

Here is what the OSG
offers today with the
support of HTCondor

technologies

I am D and
I am willing
to offer you
resources

I am S and
am looking
for
resources

Match!Match!

W3

WiWiWiWi

MM

SchedD StartD

HTCondor 101
• Jobs are submitted to the HTCondor SchedD
• A job can be a Container or a VM
• The SchedD can Flock to additional Matchmakers
• The SchedD can delegate a job for execution to a

HTCondor StartD
• The SchedD can delegate a job for execution to a

another Batch system.
• The SchedD can delegate a job for execution to a Grid

Compute Element (CE)
• The SchedD can delegate a job for execution to a

Commercial Cloud

User Science Gateway
or a DAGMan

SchedD

Local

Remote

StartD

MM

Grid CE

H
T

C
o

n
d

o
r

StartD StartD StartD

PBSLSF StartD

MM Aapp

Aapp

SSH CondorC

Factory
Front End

OSG
Glidein
Factory

SchedD

MM

StartD

MM

App App App

User Code/
DAGMan

SchedD

Local

Remote

HTCondor

MM

EC2
HTCondor

MM

Aapp

Aapp

GCE Spot

Factory
Front End

GlideIn
WMS

SchedD

VM VM VM

H
T

C
o

n
d

o
r

StartD StartD StartD

MM

Aapp AappAapp

Welcome to the HTC
Community

64

1978 1983 1985 1992 1993

Enslow’s
DPS paper

My
PhD

Condor
Deployed

