

Intro to the Virtual School Pilot, HTC, and OSG

Monday, July 13 Tim Cartwright, Lauren Michael

Welcome to the OSG Virtual School Pilot 2020!

Why You Are Here

• You need large-scale, HTC-style computing – or support researchers who do

• Do not let computing block your research!

- Computing is cheap and plentiful
- Push the limits of what you can do
- If you run out of science to do, transcend the boundaries of your science
- When computing becomes a barrier, push us to fix the problems
- Help & encourage others: In your lab, in your department, in your field, friends, etc.

• Help you learn the basics of HTC quickly

• Reach your own objectives!

- Lectures: Tue, Wed, Thu + Tue 11 am · 3 pm CT
- **Showcase** (2nd Wed): science transformed by HTC
- **Bonus topics** (2nd Wed): optional, mentor can help pick
- Work times: Most days *strongly* encouraged, if you can
- **Consultations:** Meet one-on-one with your mentor
- Lightning talks (2nd Fri): optional, chance to show work

- Your primary point of contact But you will work with others, too!
- Will help set goals, monitor progress, find resources/solutions, etc.
- When in doubt, contact your mentor (or Tim or Lauren or any staff member)

Communication Tools

- Blackboard Collaborate
 Lectures, Work times when needed, Showcase
- Slack

All the time! #general, topics, DMs

• **Zoom** (or other) Scheduled for one-on-one meetings or small groups

• Website

Slides, exercises, lectures (eventually), schedule, etc.

Feedback Is Vital

- Tell us what we could do better
- Any time, any staff member, any reason, ...
- Planning on 2 evaluation surveys

We are here for you!!!

Intro to HTC and OSG

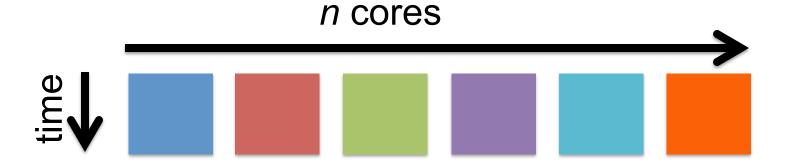
OSG Virtual School Pilot 2020

- What is *high throughput computing (HTC)*?
- What is the Open Science Grid (OSG)?
- How do you get the most out of the above?

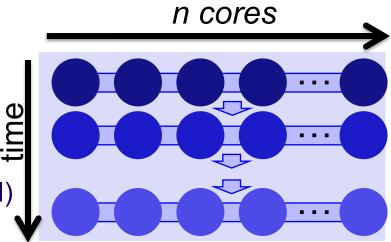
HTC: An Analogy

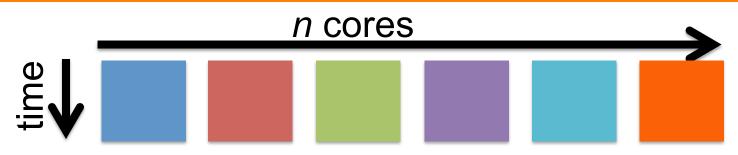
HTC: An Analogy

Serial Computing


What many programs look like:

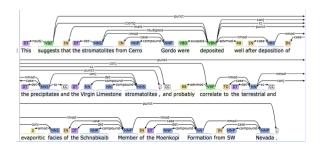
- Serial execution, running one task at a time
- Overall compute time grows significantly as individual tasks get more complicated (long) or if the number of tasks increases
- How can you speed things up?

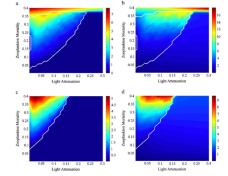

- Parallelize!
- Independent tasks run on different cores

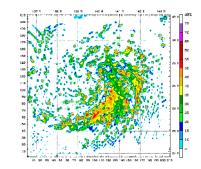


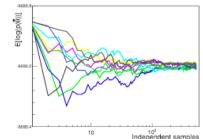
High Performance Computing (HPC)

- Benefits greatly from:
 - CPU speed + homogeneity
 - shared filesystems
 - fast, expensive networking (e.g.
 Infiniband) and servers co-located
- Requires special programming (MP/MPI)
- Scheduling: **Must wait until all processors are available**, at the same time and for the full duration
- What happens if one core or server fails or runs slower than the others?

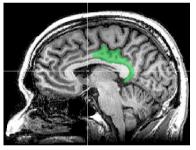

Open Science Grid High Throughput Computing (HTC)


- Scheduling: only need **1 CPU core for each** (shorter wait)
- Easier recovery from failure
- No special programming required
- Number of concurrently running jobs is *more* important
- CPU speed and homogeneity are *less* important


HTC Examples

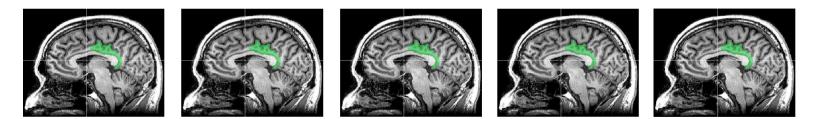

text analysis (most genomics ...)

parameter sweeps



multi-start simulations

statistical model optimization (MCMC, numerical methods, etc.)


OSG Virtual School Pilot 2020

multi-image and multi-sample analysis

Example Challenge

You need to process 48 brain images for each of 168 patients. **Each image** <u>takes ~1 hour of compute time</u>.

168 patients x 48 images = ~8000 tasks = ~8000 hrs

Conference is next week.

Distributed Computing

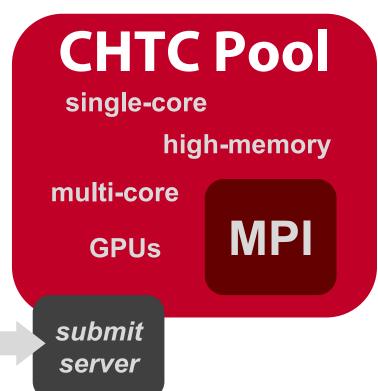
- Use many computers, each running one instance of our program
- Example:
 - 1 laptop (1 core) => 8,000 hours = ~1 year
 - -1 server (~40 cores) => 500 hours = ~1.5 weeks
 - -1 large job (400 cores) => 20 hours = ~1 day
 - A whole cluster (8,000 cores) = ~1 hour

Signs of HTC-able work

- Any mention of **<u>numerous</u>** samples, images, models, parameters, etc.
- Nearly anything written by the primary user (e.g. c/fortran, Python, R)
 - Break out of loops!
 - Common internal parallelism could really be HTC (e.g. Matlab's 'parfor', 'distributed server', etc.)
- Some community softwares that use <u>multi-threading or</u> <u>multiprocessing</u> (e.g. OpenMP)
 - many are simply looping over data portions or independent tasks
 - HTC-able: break up input (or 'parameter' space), turn off multi-threading, combine results
- Long-running jobs (especially if non-MPI); see above explanations

What computing resources are available?

- A single computer?
- A local cluster?
 - Consider: What *kind* of cluster is it? Typical clusters tuned for HPC (large MPI) jobs may not be best for HTC workflows! Do you need even more than that?
- Open Science Grid (OSG)
- Other
 - European Grid Infrastructure
 - Other national and regional grids
 - Commercial cloud systems (e.g. HTCondor on Amazon)


Example Local Cluster

- UW-Madison's Center for High Throughput Computing (CHTC)
- Recent CPU hours:

~120 million hrs/year (~15k cores)

Up to 15,000 per user, per day

(~600 cores in use)

Open Science Grid

- (d)HTC for Everyone
 - ~100 contributors
 - Past year:
 - >1.6 billion CPU hours
 - >200 petabytes transferred

- Can submit jobs locally, they backfill across the country interrupted at any time (but not too frequent)
- https://www.opensciencegrid.org/

Is it OSG-able?

<i>Per-Job</i> Resources	Ideal Jobs! (up to 10,000 cores, per user!)	Still Very Advantageous!	Probably not
cores (GPUs)	1 (1; non-specific)	<8 (1; specific GPU type)	>8 (or MPI) (multiple)
Walltime (per job)	<10 hrs* *or checkpointable	<20 hrs* *or checkpointable	>20 hrs
RAM (per job)	<few gb<="" td=""><td><10 GB</td><td>>10 GB</td></few>	<10 GB	>10 GB
Input (per job)	<500 MB	<10 GB	>10 GB
Output (per job)	<1 GB	<10 GB	>10 GB
Software	'portable' (pre-compiled binaries, transferable, containerizable, etc.)	most other than $\rightarrow \rightarrow \rightarrow$	licensed software; non- Linux

Proactive, personalized facilitation and support for:

- Individual researchers via OSG Connect
- Institutions and large collaborations
 - Share local resources via OSG
 - Locally-supported submit points
 - data and identity federation
 - integration of cloud capacity
 - Local HTC Capacity
 - Learn from OSG's Research Computing Facilitators
- **Presentations/Training** in OSG compute execution, HTC Facilitation, and local HTC systems administration

